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Abstract. Many learning technologies are now able to support both user-
customization of the content and automated personalization of the experience
based on user activities. However, there is a tradeoff between customization and
personalization: the more control an educator or learner has over the parameters
that define the experience, the more difficult it is to develop learning analytic mod-
els that can reliably assess learning and adapt the system accordingly. In this paper,
we present a novel QE method for automatically generating a learning analytic
model for the land-use planning simulation iPlan, which enables users to construct
custom local simulations of socio-environmental issues. Specifically, this method
employs data simulation and network analysis to construct a measurement space
using nothing but log data. This space can be used to analyze users’ problem-
solving processes in a context where normative measurement criteria cannot be
specified in advance. In doing so, we argue that QEmethods can be developed and
employed even in the absence of rich qualitative data, facilitating thick(er) descrip-
tions of complex processes based on relatively thin records of users’ activities in
digital systems.

Keywords: QE methods · data simulation · network analysis · learning
analytics · problem solving · trajectory analysis · environmental education

1 Introduction

Learning technologies are increasingly designed to be adaptable to the needs of learn-
ers. This has generally taken two forms, often hybridized: (1) customization, in which
educators can modify digital environments for their local contexts, learning objectives,
and learner populations, or learners themselves can make modifications based on their
interests or personal preferences; and (2) personalization, in which the technology
adapts itself automatically, determining content and progression or providing formative
feedback in real time [1–3].

Although adaptable educational technologies can have positive impacts on learning
(e.g., [4, 5]), there is a tradeoff between customization and personalization: the more
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customizable the educational experience is, the more difficult it is to design learning
analytic models or other automated assessment systems that can be reliably used to
measure learning. In other words, constructing normative assessments of learning in
complex learning environments when neither the content nor the context is standardized
presents significant challenges [6].

While this is generally true, it is especially so in environmental education,whichoften
deals with socio-environmental systems: complex interactions among human (social,
political, economic) and natural (biophysical, ecological, environmental) processes [7].
To make complex socio-environmental systems, such as land use, water quality man-
agement, or climate change, more accessible to learners, one effective approach is to
localize them [8–10]. This situates authentic, real-world problems in a real place, one that
students know and care about. For example, the online platform iPlan [11, 12] enables
educators (or learners) to construct simulated land-use planning problems in which the
location and the social and environmental issues are selected by the user. Some features
are also non-deterministic, such that each simulated problem is different, even when
the input choices are the same. While this enables educators to create localized simula-
tions of realistic land-use problems that are well adapted to their curricula and contexts,
it is particularly challenging to construct learning analytic models of student problem
solving because each problem is unique and sufficiently complex to support manifold
appropriate solution pathways.

Like most digital learning environments, iPlan records user activities in log files.
This provides a large amount of data but a relatively low amount of information about
learning and problem solving; that is, it is big data but not necessarily thick data. This
presents further challenges to constructing learning analytic models, one that is too
often solved by throwing all the data at a carousel of models in the pursuit of statistical
significance.

In this paper, we present a pilot approach to modeling problem-solving processes in
iPlan using only clickstream data. This approach leverages data simulation [13] and a
novel network modeling method to create a normative measurement space that enables
analysis of individual problem-solving trajectories. This method, which could inform
the construction of assessment models for both iPlan and other highly customizable
problem-solving spaces, makes it possible to produce interpretable representations of
solution trajectories from click data. We argue that in the absence of richer ethnographic
data, such as recordings of think alouds or interviews that can be used to assess how
individuals develop solutions to complex problems, this approach enables construction
of thick(er) descriptions from the relatively thin records of users’ activities in digital
systems.

2 Background

2.1 iPlan

iPlan [11] enables users to construct a realistic, localized land-use planning simulation
for any location in the contiguous United States. The process of simulation construction
is explained in detail elsewhere [14], but in brief, users (a) select a location using a
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Google Maps interface and (b) choose five ecological and socio-economic indicators—
measures of air andwater pollution, greenhouse gas emissions,wildlife population levels,
agricultural production, commercial activity, and housing—to include in the simulation.
Based on the location and indicators selected, iPlan generates a land-use map of the
selected regionwith at most 200 parcels and nine virtual stakeholders—business owners,
activists, and concerned citizens—who advocate for different issues that the indicators
reflect. iPlan uses a set of optimization routines to divide the selected region into parcels,
assign an appropriate land-use class to each parcel, and set stakeholder thresholds—
minimumormaximum satisfactory values—for the selected indicators. Collectively, this
process results in localized, reduced-form simulations that are realistic and appropriately
complex for non-specialists, who can use iPlan to explore some of the scientific and
social challenges involved in land-use planning and management [12] (see Fig. 1 for an
example of the map interface).

In iPlan, the goal is to produce a new land-use plan for the modeled region that
satisfies as many stakeholders as possible. To do this, learners use a map interface to
model the effects of specific land-use changes on the selected indicators. They then cre-
ate land-use scenarios [15] and submit them to the virtual stakeholders for feedback.
Learners have a limited number of feedback requests, so they are challenged to con-
duct experiments, or stated preference surveys [16], that help them determine with more
precision the changes each stakeholder will accept.

Because the simulated stakeholders have different and often conflicting demands,
learners must identify and negotiate trade-offs. For example, one stakeholder may advo-
cate for an increase in jobs, which is easiest to accomplish by rezoning parcels for com-
mercial or industrial use, but another stakeholder may want a decrease in greenhouse
gas emissions, which will increase with commercial or industrial expansion. Thus, iPlan
models not only the effects of land-use change on socio-economic and environmental
indicators but also the acceptability of land-use change to various civic interest groups,
and it is generally impossible to satisfy everyone simultaneously. That is, iPlan con-
structs simulations that help people learn about the scientific and civic practices through
which land-use planning is managed and contested, helping them understand land-use
management as a complex socio-environmental system.

2.2 Assessing Problem Solving in iPlan Simulations

Educators have found iPlan to be a useful pedagogical tool across a number of learn-
ing contexts [14], and localization of socio-environmental learning using simulation is a
powerful technique for improving learning and civic engagement [9]. However, the com-
plexity of the solution space in iPlan makes developing learning analytic models—and
thus providing personalized scaffolding based on formative assessment—particularly
challenging.

Each land-use simulation created by the iPlan system is a unique result of user selec-
tion (region, indicators) and non-deterministic optimization (parcelization, stakeholders’
preferences), and there are no strong constraints on user actions. Moreover, there are
many interaction effects: the impact of land use on indicators is determined by both
the type of land use and the area (i.e., parcel size), and each land-use class influences
multiple indicators.
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Because of this, the simulations produced by iPlan present challenges to modeling
problem-solving processes in two primary ways. First, while the division of the user-
selected region into 200 parcels is not arbitrary—the boundaries are determined by
Census boundaries—the parcels are formed based on an optimization algorithm that
minimizes land-use assignment error and avoids significant asymmetries in parcel size.
Thus, even if a user selected approximately the same region a second time, the resulting
parcelized map may not be exactly the same. Moreover, learners can change any of 200
parcels to one of 10 other land-use classifications, resulting in 11200 possible land-use
scenarios that can be constructed for a given land-use simulation. In other words, the
problem space is large and relatively unbounded, and the exact features of any land-use
map will not be available until it is created.

Second, the preferences of the virtual stakeholders are set such that the resulting
land-use problem space is neither too simple nor too complex for teenagers and non-
specialist adults. The systemselects nine out of 57possible stakeholders for each land-use
simulation based on the indicators chosen and a prioritization algorithm, then runs an
optimization routine to set the indicator threshold for each stakeholder. Because learners
are trying to satisfy as many of the nine stakeholders as possible by making strategic
land-use changes, and the thresholds determine how much change in the indicators is
needed to satisfy each stakeholder, there aremany possible solution pathways that cannot
be specified in advance or even optimized mathematically.

As a result, it is difficult to assess user actions in the simulation. There are some
universally useful strategies; for example, it is always helpful to begin by submitting the
initial map, with no land-use changes, to all of the stakeholders in order to determine
what the stakeholders want and to identify whether any of them are already satisfied.
However, successful solution strategies will generally differ depending on the particular
features of the simulation and the ways different learners negotiate the tradeoffs and
challenges intrinsic to the problem.

In what follows, we present a method for automatically constructing a measurement
space that accounts for the unique features of a given iPlan simulation and enables
meaningful interpretation of the land-use scenarios that users construct and submit to
stakeholders in that simulation. This method extracts information from log files that
is otherwise inscrutable—that is, summary information about the type and amount of
land-use changes made—and enhances understanding of both solution processes and
outcomes. We then present two constructed cases to illustrate some affordances of the
method and discuss future directions for this pilot work.

3 Methods

Tomodel learners’ problem-solving processes in iPlan, we developed an analytic proce-
dure with three main components: (a) a data simulation algorithm that uses the features
of a given iPlan simulation to construct a large and diverse set of land-use scenarios
representative of the kinds of proposals that learners might submit to the virtual stake-
holders; (b) ameasurement model that uses the simulated data to construct ametric space
into which learners’ land-use scenarios can be projected, producing a summary measure
of their decisions over the course of the simulation; and (c) a coordinated visualiza-
tion that facilitates interpretation of learners’ problem-solving trajectories. This process
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transforms unreadable click data into a meaningful, unified representation of learners’
problem-solving approaches.

3.1 Data Simulation

Because the primary goal in iPlan is to construct a land-use scenario that pleases as
many stakeholders as possible, it is important that the simulated data contain scenarios
that cover all the stakeholders’ preferences (and dispreferences). To do this, the data
simulation algorithm produces 100 scenarios for each of the nine stakeholder, 50 that
satisfy the stakeholder and 50 that do not. This set of 900 land-use scenarios is used as
the input data for the measurement model.

Each stakeholder in iPlan is associated with one indicator, and their satisfaction or
dissatisfaction with a given scenario is determined by whether that indicator is above or
below their threshold. The effects of the 11 land-use classes on indicators are computed
using a set of equations that take into account the area of each land-use class and the
magnitude of the effect a given land-use class has on a given indicator per unit of area.
In other words, for any given scenario submitted to the stakeholders, iPlan computes
the indicator values and compares them to the stakeholders’ thresholds to determine
whether the stakeholders are satisfied or dissatisfied with that scenario.

To generate simulated scenarios that are likely to satisfy (or dissatisfy) a given stake-
holder, the data simulation algorithm uses the features of the specific iPlan simulation—
the area and initial land-use class of each parcel; the indicators selected and the models
that relate land-use classes to those indicators in that location; and the stakeholders’
preferences (thresholds and directionality) as inputs. Because the effects of each land-
use on each indicator are known, for each indicator, we constructed two lists of land-use
classes: the first list (List A) contains land-use classes with a large effect on the indicator;
the second list (List B) contains land-use classes with a small or no effect on the indi-
cator. In cases where a given land-use class has a moderate effect on the indicator, that
land-use class is included in both lists. (For the purposes of data simulation and model
construction, two of the land-use classes—limited use and conservation—are combined
because they have identical effects on all indicators. Thus there are 10 land-use classes
included in the lists.) These lists are constructed such that changing a parcel with a
land-use class in List A to a (different) land-use class in List B will generally increase
the value of the indicator, and making changes in the opposite direction (from land-use
classes in List B to those in List A) will generally decrease the value of the indicator.
Using this information as inputs, the algorithm used to generate 100 scenarios for each
stakeholder is as follows:

1. Anumber, k, between1 and17 is randomly selected to determine the number of parcels
whose land-use class will be changed. This rangewas selected because approximately
two-thirds (64%) of the more than 1,300 scenarios submitted by users in a one-year
period contained fewer than 18 land-use changes, and also because a secondary goal
of the simulation is tomaximize the number of stakeholders satisfiedwhileminimizing
the amount of land-use change.

2. The algorithm randomly chooses a land-use class from List A, randomly chooses
a parcel with that land-use class, and changes it to a (different) randomly selected
land-use class from List B. This process is repeated k times.
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3. The value of the indicator that the stakeholder cares about is computed and compared
against the stakeholder’s threshold. If it is above the threshold, it is saved. If it is
below, it is discarded.

4. Steps 1–3 are repeated until 50 scenarios are generated with indicator values above
the stakeholder’s threshold.

5. Steps 1–4 are then repeated in the opposite direction, that is, making land-use changes
from List B to List A (Step 2) and saving scenarios with indicator values below the
stakeholder’s threshold (Steps 3–4).

6. Depending on whether the stakeholder wants the indicator to be below or above the
threshold, one set of 50 scenarios represents satisfaction and the other represents
dissatisfaction.

This process is conducted for eachof the nine stakeholders, resulting in 900 scenarios.
Each land-use scenario is represented by a vector with 100 terms, where each term

represents a unique ordered pair of 10 different land-use classes, and the value of each
term is the total amount of area changed relative to the starting land-use map. Because
there are a maximum of 17 land-use changes in any given scenario, most of the terms in
the vectors are zeroes.

3.2 Constructing a Measurement Model

To construct a measurement model, we use the simulated data to parameterize a metric
space into which learner-generated land-use scenarios can be projected. To do this,
we (a) sphere normalize the 900 vectors generated by the data simulation algorithm;
(b) construct nine dimensions, where each dimension maximizes the difference between
the 50 scenarios that satisfy a given stakeholder and the 50 scenarios that dissatisfy that
stakeholder; (c) perform a dimensional reduction using singular value decomposition
(SVD); and (d) project the 900 scenarios into the reduced space formed by the first two
SVD dimensions, which account for the most and second-most variance in the data,
respectively. The details of this process are as follows.

Let M be a 900 × 100 matrix, where each row corresponds to a simulated land-use
scenario, and each column corresponds to a dimension in the feature space, that is, a
unique ordered pair of the 10 land-use classes. Each row is a vector, S, of length 100 that
either satisfies (Si = 1) or does not satisfy (Si = –1) the corresponding stakeholder. The
vectors are sphere normalized by dividing each term by the total map area, converting the
raw areas into proportions of total area. This accounts for differences in length between
vectors. The normalized vectors are then represented as points in a 100-dimensional
space.

For each stakeholder j ( j = 1, 2,…, 9), the subset of points in the high-dimensional
space where Sj = 1 (n = 50) and the subset where Sj = –1 (n = 50) are used to define a
dimension. Specifically, the space is rotated (rigid-body rotation) so as to maximize the
difference between the 50 points representing Sj = 1 and the 50 points representing Sj =
–1. This results in nine dimensions, one for each stakeholder, each of which maximizes
the difference between land-use scenarios that stakeholder likes and those they dislike.

An SVD is performed to construct a reduced set of dimensions that relate the type and
magnitude of land-use change to stakeholder satisfaction across all nine stakeholders.
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Each scenario is thus represented by a set of SVD scores, and the first two dimensions can
be used to define a normative metric space into which other scenarios can be projected1.

3.3 Visualizing and Interpreting Problem-Solving Trajectories

All 900 simulated land-use scenarios are represented as points in the two-dimensional
space formedby thefirst and secondSVDdimensions. The ten land-use classes are placed
as nodes in the space using the ordered semantic co-registration layout (OSCL), the same
layout used in ordered network analysis (ONA) [18]. (For more on the mathematics and
affordances of co-registration, see [19].) Then, each land-use scenario can be visualized
as an ordered network graph using the same visualization asONA, and the nodes (i.e., the
land-use classes) can be positioned in the space such that the centroid of each network
corresponds with the location of the corresponding scenario in the reduced space. This
results in two coordinated representations: (1) one in which each land-use scenario is
summarized by a single point, and (2) one in which each land-use scenario is represented
as a directed network graph that indicates the type and proportional magnitude of the
land-use changes made.

This space can be interpreted not only based on the node positions, as in ENA or
ONA, but also by where in the space different stakeholders are satisfied. The mean, 95%
confidence interval, and range of the points representing land-use scenarios that satisfy
each stakeholder can be computed, providing a mapping of the space based on stake-
holder preferences. Stakeholder satisfaction is, in effect, sets of land-use changes that
produce desired results, and so clustering points based on the stakeholders’ preferences
provides an additional means of interpreting the space.

Using the rotation matrix produced by the measurement model, other land-use sce-
narios produced under the same simulation, such as ones constructed by learners, can
be projected into this space and interpreted by how they locate relative to the stakehold-
ers’ areas of satisfaction. Series of land-use scenarios produced by learners thus form
trajectories through the space, providing insight into the problem-solving approach that
learners take and facilitating meaningful interpretation of decision-making beyond what
can be determined based on the outcome of each submission (i.e., which stakeholders
were satisfied).

1 For readers who may be wondering why we don’t simply apply the SVD to the set of nor-
malized vectors directly and omit the step involving the construction of a dimension for each
stakeholder, this is in part because SVDs do not perform well on relatively sparse matrices,
i.e., matrices in which many or most of the coefficients are zeroes [17]. Attempts to do this
produced dimensions with low variance explained (generally < 3%) and poor co-registration
(see §3.3). While there are many techniques specifically designed to decompose sparse matri-
ces, we took an approach, inspired by means rotation in epistemic network analysis (ENA),
that both addresses the sparse matrix problem and facilitates meaningful interpretation of the
resulting space based on stakeholder preferences, which is useful given that the goal in iPlan
is to maximize stakeholder satisfaction.
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4 Proof of Concept

In what follows, we illustrate the method described above using one iPlan land-use
simulation, and we show several constructed scenarios to demonstrate the affordances
of the method.

4.1 Measurement Model of One iPlan Simulation

To construct a measurement model for evaluating problem-solving processes in iPlan,
we developed a land-use simulation for Eugene, Oregon, in the northwestern United
States. The simulation includes the indicators birds, runoff, greenhouse gas emissions,
jobs, and population (see Fig. 1). This location was chosen because it exhibits a range of
parcel sizes and land-use types, both developed and not. The central area contains mostly
high-density housing, commercial, industrial, and recreation land, while the periphery
contains mostly low-density housing, cropland, pasture, and land with limited human
use.

Fig. 1. iPlan simulation for Eugene, Oregon. Users can click any parcel(s) to change the land-use
class, and the resulting effects on indicators (percentage change) are indicated at the top.

This simulation was used to construct the metric space shown in Fig. 2. The first (x)
dimension accounts for 24% of the variance in the land-use scenarios, and the second (y)
dimension accounts for 18% of the variance, indicating that the reduced space captures
salient differences in the 900 land-use scenarios. The goodness of fit, or the correlation
of the SVD scores with the corresponding network centroids, which is a measure of the
extent to which the node positions can be used to interpret the space, is high: Pearson’s
and Spearman’s r > 0.95 for both dimensions.

The first dimension generally distinguishes low-intensity development (low-density
housing and recreation) from high-intensity development (commercial and industrial).
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This is also the dimension that distinguishes the stakeholder who wants to increase bird
populations (Grace) from the stakeholders who want to increase jobs (Ezra and Said).
This makes sense, as commercial and industrial expansion significantly increases jobs,
while low-intensity development, such as single-family homes, parks, and golf courses,
provides ideal habitats for American robins (Turdus migratorius), the bird species that
is modeled in iPlan.

The second dimension generally distinguishesminimal development (all of the land-
uses in quadrant two) from high-intensity development (industrial, commercial, and
high-density housing). This is also the dimension that distinguishes the stakeholders who
want greenhouse gas emissions to decrease (Maya and Javier) from the stakeholders who
want to increase jobs (Ezra and Said). This makes sense, as high-intensity development
produces the most greenhouse gas emissions by area, while the lowest greenhouse gas
emissions by area come from relatively undeveloped land.

Fig. 2. Metric space for the Eugene, Oregon, iPlan simulation (Fig. 1). Colored squares with
95% confidence intervals are the mean locations of the scenarios that satisfied the associated
stakeholders (key in upper right); the locations of the nodes (land-use classes) are labeled. HDH
= High-Density Housing; LDH = Low-Density Housing; Limited Use includes Conservation

To evaluate the potential use of this modeling method as an assessment tool, we con-
structed two hypothetical cases using the Eugene simulation and projected the resulting
land-use scenarios into the same metric space.
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4.2 Case 1: Same Mountain, Different Paths

We constructed a set of submissions for each of two hypothetical iPlan users, User A
and User B. Users A and B both adopt a similar, effective problem-solving strategy, but
they carry out this strategy in distinct ways. Specifically, they both submit the initial
map to gauge stakeholder preferences and then employ an accretion strategy, in which
they attempt to make progressive land-use changes such that each submitted scenario
contains all the changes from previous scenarios, the goal being to increase stakeholder
support without losing any stakeholders who were previously satisfied. Both Users A
and B have identical outcomes, in the sense that each scenario they submit satisfies
exactly the same stakeholders (see Fig. 3). In other words, Users A and B employ the
same basic strategy with the same outcome, but they make different decisions for each
submission, which indicates different ways of thinking about the problem.

Fig. 3. Land-use scenario submission outcomes for User A and User B. Green indicates stake-
holders satisfied with a submission, red indicates stakeholders dissatisfied with a submission, and
blue boxes indicate stakeholders whose rating changed compared with the previous submission
(Color figure online).

The problem-solving trajectories of Users A and B are shown in Fig. 4. (Note that
the points are jittered to aid legibility.) Both users submit the initial map as their first
scenario to gauge stakeholder preferences; because there are no land-use changes, the
Submission 1 points of both users appear at the origin.

The biggest difference in the trajectories is in Submission 2 (see Fig. 5). User Amade
only one type of change, from land with limited human use to high-density housing, and
as a result was able to satisfy Lamont, one of the stakeholders who is concerned with
planning for an increasing population. User B also satisfied Lamont with Submission
2 by increasing high-density housing, but did so by proposing infill—replacing low-
density housing with high-density housing rather than expanding to less developed land.
In addition, User B also changed cropland to recreation. Given that this change has
no impact on population, User B was most likely attempting to simultaneously satisfy
Grace, the stakeholder who advocates for bird populations. While this attempt was not
successful, it indicates that where User A may have preferred to focus on one indicator
at a time, User B was likely attempting to satisfy multiple stakeholders across more than
one indicator at once.

This case suggests that even when two users employ similar strategies and achieve
identical outcomes, there are meaningful differences in their actions that an educator
or the system itself could use as a basis for providing encouragement or additional
scaffolding, or as an opportunity for broader discussions of land-use planning and civic
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Fig. 4. Problem-solving trajectories of User A (yellow squares) and User B (green circles). The
points are jittered to aid legibility (Color figure online).

Fig. 5. Network graphs showing the land-use changes made by User A (left, yellow) and User B
(right, green) for Submission 2 (Color figure online).

practices. For example, this one pair of submissions could spark a discussion of different
planning strategies for addressing growing populations (e.g., infill vs. expansion) as well
as broader discussions about complex problem solving when there are tradeoffs among
indicators (e.g., the advantages and disadvantages of isolating one indicator at a time).
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4.3 Case 2: If By Chance You Do Succeed…

We constructed a set of submissions for each of two hypothetical iPlan users, one
who makes random land-use changes to submit to stakeholders and one who makes
systematic, strategic land-use changes. The user making random changes finishes with a
better result (6/9 stakeholders satisfied) than the user making systematic changes (5/9),
and both sequences of submission outcomes appear to indicate progressive improvement
(see Fig. 6, left). However, their trajectories reveal key differences (see Fig. 6, right).

The trajectory of the user making random submissions (purple squares) is erratic,
moving to a different part of the space with each submission. This is indicative of a
user simply clicking bunches of parcels and changing them without any particular goal
in mind. The trajectory of the user making systematic submissions (blue circles) looks
quite similar to that of User A in Case 1 (yellow squares in Fig. 4), with generally small-
to-moderate changes and a clearer solution pathway. Note that both trajectories end in a
similar place (Submission 5), but with slightly different results.

Fig. 6. Bar graphs (left) indicating the number of stakeholders satisfied by each scenario submitted
and problem-solving trajectories (right) of two users: a user making random changes to construct
land-use scenarios (purple squares) and a user making systematic changes (blue circles) (Color
figure online).

This case suggests that the proposed method for modeling problem-solving trajec-
tories could help educators and the system itself distinguish the activities of learners
who are employing a good strategy but may require some additional scaffolding from
the activities of learners who may be simply goofing around, even in cases when the
outcomes do not disambiguate the two. That is, it can help distinguish those users who
are trying unsuccessfully from those who are not trying but succeed anyway.
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5 Discussion

At this point, you might be asking yourself if this study is actually quantitative ethnogra-
phy: “Where is the E in QE?”While the proposed method for assessing problem-solving
processes in a complex land-use simulation utilizes some of the mathematical and visual
techniques commonly used in QE research, the only data come from log files, which
in this case document the parameters and features of a given land-use simulation and
record the land-use changes made and submitted to stakeholders by users. There is
nothing that looks like a typical qualitative analysis, or even anything that looks like
traditional qualitative data.

But while the data are, admittedly, thin, the clicks they represent are nonetheless a
record of key decisions made and a latent reflection of the processes by which an individ-
ual attempts to solve a complex socio-environmental problem. The method we describe
here enables a richer, thicker description of problem-solving activities to be constructed
from data that are otherwise inaccessible to traditional qualitative analysis. That is, we
use data simulation and modeling techniques to measure and visualize problem-solving
trajectories by representing a key subset of the information captured in the log files in
such a way that a meaningful story can be told about the behaviors they document.

Critically, wemodeled only a very thin slice of the clickstream data, namely the land-
use scenarios that users submitted to stakeholders. We omitted, among other things, the
land-use changes users explored but didn’t include in a submitted scenario, the use of the
graphing tool to explore stakeholder preferences in more detail, and the resources that
provide basic information about the land-use classes, indicators, and virtual stakeholders.
While each of these data types could enhance understanding of learners’ problem-solving
strategies, they are more likely to occlude than clarify because it is harder to reliably
link the digital record to a specific aspect of the problem-solving process. For example,
a user could access a resource but not read it, read it but misunderstand it, or not access a
resource yet still possess the knowledge it contains.Allwe know iswhether they accessed
a given resource, when, and for how long, and thus it is difficult to interpret the access
records reliably enough for the purposes of understanding problem-solving strategies. In
other words, without strong theoretical grounds or prior empirical work that would guide
interpretation of this information, it is likely to add more noise than signal. Put another
way, we gain more by pruning information than we do by adding it because this boosts
the signal relative to the noise. This deep, theory-based engagement with the data, we
argue, is a key feature of good quantitative ethnography and of good learning analytics
[20]. And indeed, this entire modeling approach could only be developed because we
have a deep understanding of iPlan and how it is used.

But this still leaves the question of how to close the interpretive loop; that is, how
to warrant that the model is, indeed, well aligned with the original data and that re-
interpretation of the original data in light of the model does not change the story. In this
case, we didn’t start with a qualitative interpretation of the data—that isn’t often possible
with clickstream data—but with a theory about different ways that a learner could solve
the land-use problems simulated in iPlan and what that might look like as a series of
submitted land-use scenarios. (And, because we constructed the case studies, we knew
what users were trying to do.) Because our modeling process employs simulated data
to construct the measurement space and projects real data into that space, closing the
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interpretive loop involves demonstrating both that themeasurement space itself is aligned
with the features of the specific iPlan simulation and that there is alignment between
the model’s representation of users’ submission trajectories and the problem-solving
strategies they represent. In this pilot study, we demonstrated that the data simulation
and modeling process produces a sensible representation of the problem space based
both on the node positions (land-use classes) and the locations of stakeholders in the
space. We then showed that users’ problem-solving trajectories were well aligned with
the strategies they employed based on two constructed case studies: one comparing two
users with similar strategies and identical outcomes, and one comparing two users whose
outcomes may be misleading as indicators of effective problem solving. In both cases,
the method was highly sensitive to key differences in problem-solving processes.

Because this is a pilot study, further work involving data from learners using iPlan
in typical educational contexts and carefully designed studies that can link reported
intentions and observed actions to model outputs will be needed to fully validate this
approach. Such studies could also explore the inclusion of the other clickstream data
types described above, or additional process data, by generating the theoretical basis for
thoughtfully integrating that data with the submitted scenarios. Nonetheless, this initial
study makes several contributions to QE methodology.

First, as Shaffer and Ruis have argued, QE is not just ENA [21]. While the method
described here utilizes the ordered semantic co-registration layout from ONA [18] to
generate directional network graphs that are co-registered with the metric space, the
techniques used to accumulate connections and construct themetric space itself are novel
and emerged from the specific challenges of analyzing decision-making and problem-
solving in iPlan. This study thus adds to the growing methodological toolkit of QE
research.

Second, this study provides an example of the use of data simulation in QE
research, and indeed a use for data simulation beyond the four cases described by
Swiecki and Eagan [13]. Learning technologies with highly customizable inputs and
non-deterministic outputs can construct problems for which optimal solution pathways
do not exist (or can’t be reasonably derived). This means that norms cannot be estab-
lished a priori for formative assessment of learner activities. Data simulation provides
a mechanism for constructing a normative space into which learner activities can be
projected and measured, providing the system with a basis to better scaffold learning,
providing teachers with the information needed for just-in-time intervention and encour-
agement, and providing researchers with a powerful model for studying learning in a
complex problem-solving context. While this is not the first example of such projec-
tion—Siebert-Evenstone, for example, projected planned and enacted curricula into a
space constructed using the Next Generation Science Standards [22]—it demonstrates
the utility of data simulation for constructing such spaces in contexts where prior data
cannot be obtained.

Lastly, this study challenges, albeit indirectly, the assumption that more or richer data
is necessarily better for modeling complex processes. The data used to model problem-
solving in this study are quite thin, representing the types of land-use changes made and
the amount of those changes at key points in the problem-solving process. That is, the
data document only the decisions that users make when they submit land-use scenarios
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to stakeholders. But those data document arguably the most important decisions, and
thus provide a good proxy for a learner’s strategy. In other words, the model presented
here was constructed based on a theory that links a key problem-solving behavior—
choosing land-use scenarios to submit to stakeholders—to a broader problem-solving
strategy. The choice of data—its thinness—was a strategic decision to minimize noise;
that is, we discarded much of the information in the log files but also discarded most of
the noise, leaving a high signal-to-noise ratio. In other words, we had less information,
but it was more useful, and we argue that another key element of good QE research (and
good learning analytics) is that every decision along the primary modeling pathway [20]
is guided by theory about what to attend to and what to ignore.

This paper thus addresses a critical challenge in learning analytics and processmodel-
ing more broadly, namely the challenge of analyzing complex thinking or decision mak-
ing in contexts where normative measurement criteria cannot be specified in advance.
In doing so, we present a novel theoretical and methodological approach to generating
thick descriptions from thin data.
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